Browse Current Issues

  • Ninth Edition – Parking structure highlights, getting to the new campus, naturalizing the site, and more.
  • Eighth Edition – How a new trauma centre will save lives, an update on the Indigenous Peoples Advisory Circle, a feature on artwork by Algonquin artists Simon Brascoupé and Mairi Brascoupé, and a letter on hospital parking by Chiefs of Staff from hospitals across the region.
  • Seventh Edition – A commitment to the canopy at the New Civic Campus, creating a transit-oriented hospital, and more.
  • Sixth Edition – New sustainability benchmarks in the New Campus Development, an update on the Indigenous Peoples Advisory Circle, an an interview with Orleans Councillor Matt Luloff, and more.
  • Fifth Edition – The proposed design of the cutting-edge new campus, “Early works” projects beginning on the New Campus Development, an interview with River Ward Councillor Riley Brockington, and more.
  • Fourth Edition – How the finance team is planning for a $2.8 billion hospital, an interview with Chair of Ottawa’s Planning Committee Jan Harder, how the new Civic development will transform the patient experience – and more!
  • Third Edition – How architects are designing the hospital with Ottawa’s daylight and weather patterns in mind, a look at groundbreaking research, and the team working hard behind the scenes to plan a hospital for the future.
  • Second Edition – What it means to build a universally accessible hospital, how the environmental cleanup of the site is beginning, and more.
  • First Edition – How we will partner with the Unionized Building and Construction Trades Council.

It’s time to propel our world-class teams with the world’s greatest technology.

The future of healthcare is embedded with technology and innovation.

Planted in the heart of Canada’s high-tech sector, our new hospital will leverage local talent to ensure it is the most technologically advanced in the country — providing the most sophisticated, leading-edge care to every patient. 

The Virtual Healthcare Hub

The Virtual Healthcare Hub will be strategically located on the grounds of our new campus and will be a first point of contact for patients. It will improve communication with their healthcare providers and ensure all but the most critically ill are treated outside a hospital setting. Innovation like this will allow us to provide the right care, in the right space, with the right provider.

Innovation = the right care, in the right space, with the right provider

Unrivalled data analytics means unparalleled care

‘Big data’ might be new for other institutions, but in the last two decades, we’ve become widely recognized as a world-leader in healthcare analytics and implementation. 

We plan to deploy the most advanced data analytics platform in the country, if not the world. Harnessing data will allow us to enhance care for patients everywhere. 

“We are now poised to go to the next level — by harnessing data and using the latest digital technology and artificial intelligence to save lives.”

— Dr. Alan Forster, Vice-President of Innovation and Quality, The Ottawa Hospital

Breaking ground with high-tech healthcare

Extraordinary people with access to extraordinary technology can do extraordinary things. 

With a living laboratory space to ideate, develop, test, and scale digital innovations, we’ll address some of the world’s biggest healthcare challenges and train the innovators of tomorrow. 

“Together, we are redefining what is possible and stepping boldly into the future of healthcare. Innovations that happen right here at our hospital will have a global impact for generations. With your support, we will lead the way.”

— Cameron Love, President & CEO, The Ottawa Hospital

Technology that transforms personalized care

We’re committed to developing technology that will help save lives.
Wearable and mobile technology will not only empower patients to manage their health but will also allow medical staff to monitor their journey and provide care when it’s needed — driving a critical shift in the delivery of healthcare.

Together, we can bring the latest medical advances to every patient.

It's time to create a better tomorrow.

About the Campaign to Create Tomorrow

The Campaign to Create Tomorrow is the largest fundraising campaign in our region’s history. It will help fulfil the most ambitious vision ever for the future of The Ottawa Hospital, focused on four critical pillars.  

INNOVATION & TECHNOLOGY

WORLD LEADING RESEARCH

Through our unique collaborative model of clinicians and researchers working side-by-side, we will bring groundbreaking discoveries to patients in Ottawa — and around the world.
Learn More

STRENGTHENING CRITICAL SERVICES

From trauma care to cancer advancements to neuroscience, we will strengthen our critical services for patients across the region.
Learn More

The Ottawa Hospital has made great strides in addressing today’s most pressing challenges in neuroscience. We are internationally recognized for our groundbreaking research and treatment of many neurological diseases, such as stroke, neuromuscular illnesses, and Parkinson’s disease (PD).

In fact, we are one of very few centres in Canada where neurologists work hand-in-hand with basic scientists to tackle unsolved problems. Our goal is to foster new ideas and expand our range of clinical trials to quickly bring cutting-edge treatments directly to our patients. Some of the discoveries that lead to new interventions have been made here.

Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s, affecting over 100,000 Canadians. The disease continues to mystify according to Dr. Michael Schlossmacher, a neurologist and the Bhargava Family Research Chair in Neurodegeneration at The Ottawa Hospital. This Chair is an example of one way philanthropists, like the Bhargava family, actively support the hospital.

“It was in 1961 when one of my teachers in Vienna first discovered the Lazarus-type effect of how dopamine therapy can suppress the symptoms of Parkinson’s. That was six decades ago, and we now understand more of the mechanisms underlying the motoric deficits, but we still don’t have a therapy in place to stop the illness in its tracks,” says Dr. Schlossmacher.

Thinking outside the box for Parkinson’s treatment

Dr. Michael Schlossmacher, The Ottawa Hospital

“If we want to treat Parkinson’s, slow it down or stop it, it will only happen through research that identifies better ways to separate subtypes of the illness and confirm targets to develop drugs for interventions.”

– Dr. Michael Schlossmacher

While progress is slow and often frustrating for patients, active research continues to probe for answers. “If we want to treat Parkinson’s, slow it down or stop it, it will only happen through research that identifies better ways to separate subtypes of the illness and confirm targets to develop drugs for interventions. Then, we’ll need to test them in the clinic and, upon demonstration of safety, apply them to a large body of patients in trials to gauge efficacy,” explains Dr. Schlossmacher. He is quick to point out that our Parkinson’s Research Consortium has made a name for itself in Canada and internationally, both on the clinical side and through basic research. Some of the clinical research activity is directed at improved integration of care delivery that we have already available today.

Philanthropy and grants play a pivotal role in moving research forward. For Dr. Schlossmacher and his team, it often allows them the opportunity to develop ideas that are largely out of the mainstream and represent ‘outside the box’ thinking. “Philanthropy has the potential to transform research activities by amplifying them and supporting talented trainees that can work on creative, new ideas.”

Does Parkinson’s start in the nose?

Over the years, research has shown more than 80% of people with Parkinson’s disease suffer from a reduced sense of smell — it often occurs years before the onset of typical movement-related symptoms. Understanding those early indicators could help in an early diagnosis for patients.

Recently, a US $9-million grant from the Aligning Science Across Parkinson’s (ASAP) initiative was announced to further explore this idea. The hope is to determine whether scent-processing nerves that connect the inside of the nose to the brain may play a role in the development of the disease. Dr. Schlossmacher is the overall leader of the effort.

Dr. Julianna Tomlinson, the scientific program manager for the international team and co-director of research in the Schlossmacher Lab at our hospital, explains the importance of this study. “For us, this is an incredible opportunity to align efforts around the world, because it brings together scientists previously anchored in the PD field with researchers who heretofore have been working outside the field of Parkinson’s.”

There are eight institutes in five countries collaborating on this global study. It’s a unique opportunity to get answers to questions that scientists here in Ottawa have been asking for quite some time, including what role environmental triggers (other than toxins) play in Parkinson’s disease as they interact with genetics. “Right now, the treatments for Parkinson’s help the symptoms but they do not stop the progression of the disease. If we can identify disease processes at an early stage, then hopefully we will be able to stop or at least slow its progression before it reaches those later stages,” says Dr. Tomlinson.

The Ottawa Hospital leads this international effort

There are five main areas that this interdisciplinary and multinational study is pursuing. Our hospital’s focus is on how the immune system relates to Parkinson’s. Specifically, laboratory models will determine how viruses and bacteria could lead to changes in the body that are linked to pathology that is seen in the diseased human brain. Understanding the function of genes that are linked to Parkinson’s and whether those genes could be functioning in the immune system, rather than just in the brain, will also be explored.

The support of our hospital is instrumental in being able to lead this international effort. “There are so many people who are involved in making this work. It’s a full team effort, including financial officers, publication experts, and colleagues with knowledge in technology transfer,” explains Dr. Tomlinson.

Ultimately, it’s about finding answers for our patients and their family members who are desperately waiting for a breakthrough. As Dr. Schlossmacher explains, that’s why the world will be watching these scientists. “From an innovation and creativity perspective, we are setting the stage as a team as to how complex research avenues could be brought together, where people work collaboratively and constructively. We don’t undermine each other; we really complement each other and enable each other.”

Making the patient connection

For nearly two decades, Kelly McDonald felt there was something physically wrong with her, but even an eventual diagnosis of fibromyalgia in her 30s didn’t provide her with the answers she needed. McDonald, a professional photographer with a sharp eye, always knew something was off. Her stance wasn’t great, she struggled with her posture, and she’d get tired easily. However, solving her health mystery was an ongoing challenge and source of frustration. “You know, people think you’re a hypochondriac,” says Kelly.

It wouldn’t be until 2021, at the age of 52, when Kelly was diagnosed with Parkinson’s disease. In recent years, she started to develop tremors, her handwriting deteriorated, and she increasingly had a hard time getting her foot properly placed in her shoe. It was at that point, Kelly’s husband convinced her to see her doctor. Soon her right side became stiff and at times, she also felt numb. Kelly thought she was having a stroke.

“I consider myself a Parkinson’s warrior. I want to be a warrior. I want to bring more awareness to this disease, and I want people to be diagnosed earlier.”

– Kelly McDonald

Kelly McDonald
Knitting is a passion that Kelly won’t yet
give up.

When Kelly met with a neurologist at The Ottawa Hospital, tests revealed she had Parkinson’s — a diagnosis that she, surprisingly, welcomed. “I was just relieved, because I thought I was going to die from a stroke, like my dad did,” remembers Kelly.

Kelly’s father also had suffered from Parkinson’s. Moreover, soon after her diagnosis, she learned even more about her family history, namely that it also had affected the paternal side of her family. She is being cared for by Dr. David Grimes, the Head of the Division of Neurology at our hospital and an expert in movement disorders. It was Dr. Grimes who asked Kelly whether she would be interested in a study known as the Parkinson’s Progression Markers Initiative (PPMI).

Kelly admits that there were some dark days after her initial diagnosis. But in coming to terms with her new reality, she woke up one morning with a new view on her life. “I decided I have this, let’s do something good. I consider myself a Parkinson’s warrior. I want to be a warrior. I want to bring more awareness to this disease, and I want people to be diagnosed earlier,” explains Kelly.

“A lot of people start to tremor when they’re older, and some people think it’s a disease that only affects older people. But Michael J. Fox was diagnosed when he was 29.”

– Kelly McDonald

She enrolled in the PPMI study to help all those living with a Parkinson’s gene mutation, like her, that don’t realize they have it. It’s not until the shaking begins that the red flag goes up. “A lot of people start to tremor when they’re older and some people think it’s a disease that only affects older people. But Michael J. Fox was diagnosed when he was 29.”

What is PPMI?

PPMI is a landmark study led by The Michael J. Fox Foundation investigating better treatment options and prevention of the disease.

The Ottawa Hospital is one of nearly 50 sites across 12 countries participating in the expansion of the PPMI study. The team at our hospital is recruiting people recently diagnosed with Parkinson’s, who are not yet taking medication to control symptoms, as well as people age 60 and older who do not have Parkinson’s but are living with certain risk factors. Those interested in enrolling at The Ottawa Hospital can find the detailed eligibility criteria and how to contact the study team here. The Ottawa Hospital was the first Canadian study site to recruit participants when the study started to include sites outside the US; the expansion phase of the study means there could be 4,000 participants across all sites by the end of 2023.  

“We are proud to be partnering with The Michael J. Fox Foundation and other PPMI site participants, and we are very grateful to the study’s dedicated volunteers who are helping us to move toward a future of disease prevention and better options for those living with Parkinson’s.” 

– Dr. Tiago Mestre

Dr. Tiago Mestre is the principal investigator at our hospital, and he explains initial discoveries from this global study have already had an impact. “Early findings have revolutionized the understanding of Parkinson’s biology and the design of clinical trials testing potential new treatments, but there is much more to uncover. We are proud to be partnering with The Michael J. Fox Foundation and other PPMI site participants, and we are very grateful to the study’s dedicated volunteers who are helping us to move toward a future of disease prevention and better options for those living with Parkinson’s.”  

Kelly joined the study mid-2021 and she’ll be monitored for 13 years. She says it’s been an amazing experience so far and she’d encourage others to consider joining. “Not only do you gain information about yourself and current information on your condition, but a study like this can help other people in the future. It also seems like Parkinson’s runs in my family. I could learn important information that could help my sister or my niece.” says Kelly.

For now, she’s looking ahead and doesn’t lose focus, whether it’s on her photography or as a warrior combatting Parkinson’s.


The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

Vittorio Petrin has never seen his grandchildren’s faces. The Italian draftsman started to lose his peripheral vision in the early 1980’s after his second son was born, forcing him to leave work and take an early pension. He was diagnosed with retinitis pigmentosa, a genetic disorder that causes the cells in the retina to break down. There is no cure. His vision steadily got worse until he couldn’t see any light at all.

Before his vision went dark, Vittorio spent six years building a model of St. Mark’s Basilica in Venice, using over 3,000 copper pieces. “It was the most beautiful place I’d seen, and I wanted to replicate it. Working on it kept my mind away from what was going to happen,” he says.

An image of Vittorio Petrin with a replica of St. Mark’s Basilica he built while losing his vision to retinitis pigmentosa.
Vittorio Petrin with a replica of St. Mark’s Basilica he built while losing his vision to retinitis pigmentosa.

“My dad was an artist. He was able to draw phenomenally, he liked taking videos. Sight was important to him,” says Vittorio’s son Dino Petrin. “He never complained about going blind, we never saw it as children. He always had a sense of humour and a strong character. He never asked for any pity, he just took it in stride.”

Millions of people in North America live with retinal diseases like retinitis pigmentosa, glaucoma, retinal ischemia and age-related macular degeneration. These diseases are poorly understood, progressive, and often untreatable.

But thanks to promising gene and cell therapies in development, Dino hopes that one day people like his father won’t have to lose their vision.

Dr. Catherine Tsilfidis' research is aimed at developing a gene therapy strategy that blocks apoptosis and slows down retinal disease progression.
Dr. Catherine Tsilfidis

“Soon we’ll be able to do what our lab has been trying to do all along – bring XIAP gene therapy into the clinic.”

– Dr. Catherine Tsilfidis

A discovery with game-changing potential

Dr. Catherine Tsilfidis can imagine the day when the first patient is treated with the retinal disease gene therapy her lab has worked on for the past 20 years. While it won’t happen tomorrow, that day is not far off.

“XIAP gene therapy is exciting because it keeps cells in the back of the eye from dying,” said Dr. Tsilfidis, a senior scientist at The Ottawa Hospital and associate professor at the University of Ottawa. “It could slow or stop vision loss caused by many different retinal diseases.”

Dr. Tsilfidis is leading a world-class team of researchers that recently received $2.4 M from the Ontario Research Fund to develop gene and cell therapies for retinal diseases. One of their goals is to do the work needed to bring XIAP gene therapy into clinical trials, which could start in the next few years.

The time is right for gene and cell therapy

The promise of replacing defective genes and cells in the eye with healthy ones is undeniable. While these fields are still in their infancy, they are expected to grow exponentially over the next decade. Gene therapy for the eyes has particularly taken off, with Health Canada approval of the first gene therapy for a rare genetic form of vision loss in 2020.

“This research program could make Ontario a leader in the fields of both gene and stem cell therapy

– Dr. Pierre Mattar

When it comes to cell therapies, Ottawa and Toronto are major hubs in the growing area of stem cell research. As partners in the retinal research program led by Dr. Tsilfidis, UHN scientist Dr. Valerie Wallace will work on increasing the survival of transplanted stem cells in the eye, while The Ottawa Hospital’s Dr. Pierre Mattar aims to develop stem cell therapies for retinal ganglion cell diseases such as glaucoma. “This research program could make Ontario a leader in the fields of both gene and stem cell therapy,” said Dr. Mattar. “By learning the best way to mass produce and integrate stem cells for retinal disease, we can advance stem cell research in other fields.”

The Ottawa Hospital's Dr. Pierre Mattar aims to develop stem cell therapies for retinal ganglion cell diseases such as glaucoma.
Dr. Pierre Mattar

Collaboration between lab researchers and clinicians key to success

The incredible challenge of bringing a basic science discovery to clinical trials requires an exceptional team. For this research program, Dr. Tsilfidis assembled a “dream team” of long-time collaborators and new partners.

As a basic scientist, Dr. Tsilfidis has always worked closely with clinicians to help ensure her research reflects patient needs.

“Ophthalmologists help us identify the most important questions to ask,” said Dr. Tsilfidis. “Our lab started working on diseases like Leber hereditary optic neuropathy and glaucoma because clinicians told us how much of a problem they were.”

Two of Dr. Tsilfidis’ long-time clinical collaborators, Drs. Stuart Coupland and Brian Leonard, are part of this new retinal research program. They are joined by retina specialists Drs. Bernard Hurley and Michael Dollin, who will assist in developing clinical trial protocols.

“Our researchers have an incredible track record of taking discoveries from the lab to the bedside,”

– Dr. Duncan Stewart

Dr. Tsilfidis’ lab and office are just down the hall from the ophthalmologists’ offices and clinics, which makes collaboration easier. This kind of co-location of scientists and clinicians has been key to The Ottawa Hospital’s success in translating discoveries from the lab bench to the patient bedside.

The highly skilled team at The Ottawa Hospital's Biotherapeutics Manufacturing Centre will make the clinical-grade virus to deliver gene therapy into the eye.
The highly skilled team at our Biotherapeutics Manufacturing Centre will make the clinical-grade virus to deliver gene therapy into the eye.

Leveraging our biomanufacturing expertise at The Ottawa Hospital

In addition to clinical experts, the team knew they needed new resources and partners to be successful.

“We’ve been very much a basic science lab in the past,” said Dr. Tsilfidis. “Now that we’re at the stage that we want to get XIAP to the clinic, we need all the help we can get.”

One missing piece was a special clinical-grade virus used to deliver the XIAP gene into the eye, known as an adeno-associated virus (AAV). Finding cost-effective sources of AAVs has been a major bottleneck for getting gene therapy trials and treatments off the ground.

Thankfully, The Ottawa Hospital is home to the Biotherapeutics Manufacturing Centre (BMC), a world-class facility that has manufactured more than a dozen different virus- and cell-based products for human clinical trials on four continents. Experts at the BMC were already starting to expand into AAV manufacturing when Dr. Tsilfidis approached them about collaborating on the retinal research program.

The BMC has since been working with Dr. Tsilfidis and her team to develop a process to manufacture the AAVs the team will need for Health Canada approval of the XIAP gene therapy for clinical trials.

The BMC is on track to become the first facility in in Canada to make clinical-grade AAV vectors for gene therapy studies. This new expertise will help them support other gene therapy trials with a focus on rare disease.

Drs. Manoj Lalu and Dean Fergusson along with other experts at the Ottawa Methods Centre are helping to plan a future clinical trial of gene therapy for retinal disease.
Drs. Manoj Lalu and Dean Fergusson along with other experts at the Ottawa Methods Centre are helping to plan a future clinical trial of gene therapy for retinal disease.

How to plan a world-class clinical trial

In addition to the clinical-grade virus, the retinal research team needed help planning a future clinical trial of XIAP gene therapy. Fortunately, there are no shortage of clinical trial experts at The Ottawa Hospital.

“I’ve never planned a clinical trial before,” said Dr. Tsilfidis “But I knew someone who had – Dr. Dean Fergusson. I’ve always been impressed by the rigorous trails he’s helped develop. When I asked for his advice, he referred me to the Ottawa Methods Centre.”

The Ottawa Methods Centre is The Ottawa Hospital’s one-stop shop for research expertise and support. Their goal is to help all clinicians, staff and researchers at the hospital conduct the highest quality research, using the best methods. They support over 200 research projects a year, led by clinical and basic researchers alike.

“The Ottawa Methods Centre has been amazing to work with,” said Dr. Tsilfidis. “Their research methodology expertise has strengthened this research program and our funding applications.”

At the Ottawa Methods Centre, the team is leveraging the Blueprint Translational Research Group’s Excelerator program, designed to enable efficient translation of basic research discoveries to the clinic through rigorous methods and approaches. Co-led by Dr. Dean Fergusson and Dr. Manoj Lalu, the program will help design the clinical trial protocol, and support the clinical trial application to Health Canada through systematic reviews of available pre-clinical and clinical data.

Research program holds enormous promise

Tackling retinal disease will be a big challenge, but Dr. Tsilfidis has assembled an excellent team of partners both old and new to move this research program forward.

“These therapies could be life-changing. If we could cure or slow down the progression of vision loss, that would be amazing.”

– Dino Petrin

“Our researchers have an incredible track record of taking discoveries from the lab to the bedside, but it can only be done through team efforts like this one,” said Dr. Duncan Stewart, Executive Vice-President of Research at The Ottawa Hospital and professor of medicine at the University of Ottawa. “Fully leveraging our basic and clinical expertise, as well as our world-class core research resources is the key to getting new treatments to the patients who need them.”

For Dr. Tsilfidis, the excitement is palpable. “Soon we’ll be able to do what our lab has been trying to do all along – bring XIAP gene therapy into the clinic.”

Dino, a former graduate student in Dr. Tsilfidis’ lab, sees the potential of gene therapies to help people like his father. “These therapies could be life-changing,” he said, “If we could cure or slow down the progression of vision loss, that would be amazing.”

Vittorio Petrin pictured with his wife Maria Petrin
Vittorio Petrin with his wife Maria Petrin

The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

When Owen Snider faced the news that his lymphoma had returned for the third time in ten years, he knew his options were running out. But a transformational new treatment known as CAR-T therapy gave him renewed hope. The Ottawa Hospital was recruiting patients for a clinical trial investigating a made-in-Canada approach to this cutting-edge treatment. He just needed to qualify for the trial.

In 2010, Owen was diagnosed with large B-cell lymphoma. In his early 60s at the time, he went through a chemotherapy treatment known as R-CHOP. For most people, it lasts 18 weeks. “It was a rigorous treatment. I got through it okay and was six years clear, but then it came back — the lymphoma returned in 2016,” says Owen.

When the cancer returned, his care team at The Ottawa Hospital vetted him for a stem cell transplant. By the summer of that year, he went through what he called an intensive program using his own stem cells. A high dose of chemotherapy was used to remove harmful immune cells in preparation for the transplant of his own healthy cells. “It’s pretty brutal, and after two or three months of wishing maybe I wasn’t around, things improved. I was clear for another four years.”

“I was given five or six months to live. My wife and I were downhearted with that news.”

— Owen Snider

Lymphoma returns for a third time

Following his stem cell transplant, Owen remained healthy for four years, enjoying retirement at his home in a beautiful, wooded area near Calabogie, where he lives with his wife, Judith Snider. But then Owen faced his biggest challenge yet when the lymphoma returned — again. This time, the diagnosis came in May 2020, in the midst of the pandemic. “I remember my oncologist saying they’ve done pretty much everything they could. I was given five or six months to live. My wife and I were downhearted with that news. I was basically going to be kept as comfortable as possible for six months,” remembers Owen.

Judith and Owen Snider kayaking.
Judith and Owen Snider kayaking.

However, one week later Owen received a lifeline. His oncologist called to say a CAR-T therapy clinical trial had opened at The Ottawa Hospital — a Canadian first. They wanted to see if he would be a good candidate. Throughout June of 2020, he went through a battery of tests and scans to see if he qualified for the trial.

“This type of immunotherapy research is groundbreaking, and it’s never been done in Canada before.”

– Dr. Natasha Kekre

By mid-June, Owen got the green light. He was a candidate for the clinical trial, and didn’t hesitate to enroll. “I either participate in the trial or I lie around here for four or five months waiting for the end. Which choice would you have made? The positive way to put it is that I was very excited to be a part of the trial. We’re the kind of people where the glass is always half-full,” explains Owen.

What is CAR-T therapy?

CAR T-cell therapy is a type of immune therapy that is an emerging biotherapeutic treatment that harnesses the power of a patient’s own immune cells, known as T-cells, to treat their cancer. T-cells play a critical role by killing abnormal cells, such as cells infected by germs or cancer cells. In some cancers, like lymphoma or leukemia, cancerous cells become invisible to the T-cells that are meant to kill them. In CAR-T therapy, the T-cells are collected and reprogrammed in the lab to recognize and destroy the cancerous cells.

Dr. Natasha Kekre is a hematologist and associate scientist at The Ottawa Hospital. She is leading the development of Canada’s first CAR-T research platform in collaboration with the BC Cancer Centre. “This type of immunotherapy research is groundbreaking, and it’s never been done in Canada before. This is a therapy that uses a patient’s own immune system. It’s personalized medicine — it’s very individualized to each patient,” explains Dr. Kekre.

The Ottawa Hospital is one of the first hospitals in Canada to participate in nationally-led CAR-T trials, and as one of Canada’s top research and treatment centres, the hospital is ideally positioned to play a lead role in bringing an innovative CAR-T research program to Canada, and to Canadian patients.

Going for the Pac-Man effect

In late June 2020, Owen went through apheresis which is the process of withdrawing the T-cells in his blood. “They put an IV in my right arm, and ran the tubing through the machine, and the machine processes the blood and pumps it back through the tubing into my other arm. I lay there on the bed for three or four hours, without moving I should add.”

“It’s just like Pac-Man, the modified T-cells ran around in my blood stream, chomping away at the lymphoma.”

– Owen Snider

Those T-cells were then sent to a lab in BC, re-programmed, and then returned to our hospital two weeks later. Then the T-cells were re-administered just like a blood transfusion. “It allows for that new immune therapy in these cells to go and find the patient’s cancer cells, attack them, and kill them. And it also stimulates the immune system in that patient to further go attack and fight their cancer,” explains Dr. Kekre.

On July 2, Owen received a PICC line and then went through three days of chemotherapy. Four days later he was re-injected with his T-cells and they got to work. “It’s just like Pac-Man, the modified T-cells ran around in my bloodstream, chomping away at the lymphoma.”

His re-programmed T-cells were specifically looking for cancer cells to kill. Owen would need to wait to find out if it was working.

Owen Snider, seen at home, was treated for lymphoma as part of a CAR-T clinical trial.
Owen Snider

Did the CAR T-cells therapy work?

One month later, Owen and Judith received some exceptional news. “At my check-up 30 days after getting my T-cells back, I was almost clear of cancer. The scan showed that there was almost nothing left. I was gobsmacked,” he says.

By the three-month mark, Owen says he was as “clean as a whistle.” Eighteen months later, there is still no sign of lymphoma.

For Dr. Kekre, giving patients like Owen new hope for the future is what inspires her. “For the first time, I think in a long time, Owen felt that the lymphoma might actually be disappearing. He’s had multiple scans since then that show the same thing. And so now, I think he’s starting to believe it. And I think that’s the reality of why I do this, because patients like him who had no options before, could soon have the option of CAR-T therapy. That’s what happened for Owen and that’s what we hope will happen for many more patients,” says Dr. Kekre.

Dr. Natasha Kekre and Owen Snider. Owen was treated for lymphoma as part of a CAR-T clinical trial at The Ottawa Hospital.
Dr. Natasha Kekre and Owen Snider. Owen was treated for lymphoma as part of a CAR-T clinical trial.

What’s next for the clinical trial?

Dr. Kekre and her team are monitoring all patients enrolled in the trial and expect to publish the results sometime in 2022. The purpose of the clinical trial is to provide proof to Health Canada this therapy is safe. “The reality is that we have a data safety monitoring board, which watches for the safety of the trial, and they’ve had no concerns. So, from a safety point of view, we’re very happy with the trial. And that’s why we are still open and we’re still able to enroll more patients,” explains Dr. Kekre.

Why is The Ottawa Hospital unique in its CAR-T therapy?

CAR-T therapy needs to be individually manufactured for each patient using the patient’s own cells combined with large amounts of highly pure virus to deliver the chimeric antigen receptors (CAR) gene. The Ottawa Hospital’s Biotherapeutics Manufacturing Centre is ideally positioned to manufacture the clinical grade virus needed to create CAR T-cells for clinical trials. In fact, we have the only facility in Canada that has produced this kind of virus for clinical trials.

The hope is that one-day CAR T-cell therapy may also be a treatment for a variety of cancers. “The world is watching us,” explains Dr. Kekre. “We’ve had a lot of attention from Denmark, and a few other European countries are reaching out. They believe in a system similar to ours, where patients all have the right to access healthcare. If CAR T-cells are here to stay, they have to be done in a sustainable approach for our patients. And that’s a big part of what we are building — this is only the beginning. And that’s what people are looking at us to see how we do it.”

“Without philanthropy, we wouldn’t have a Biotherapeutics Manufacturing Centre or a Methods Centre at The Ottawa Hospital, and we wouldn’t be able to do innovative clinical trials like this.”

– Dr. Natasha Kekre

This made-in-Canada CAR T-cell research platform will give Canadian patients more access to innovative clinical trials. “Canadian cancer patients shouldn’t have to wait for the research to be done elsewhere but be able to participate in innovative clinical trials here at home,” says Dr. Kekre.

Grateful for each day and philanthropic support for research

Today, Owen appreciates each day and a good quality of life thanks to the clinical trial. He feels strong and can’t wait for the day when he and Judith can travel again — grateful for the lifesaving research. “It was an honour and a privilege to be chosen for the trial.”

He also credits the extraordinary care team and those special moments when he visited the hospital. “I can tell you that I always felt more than comfortable. I felt encouraged by anyone I met. The team on 5 West as we know it, is wonderful. I had an occasion to go back there last spring, and it was like walking back into Cheers — everybody knows your name.”

As a longtime supporter of The Ottawa Hospital, and to see philanthropy play an important role in making this clinical trial a reality, he’s an even bigger advocate for encouraging support for our hospital. “All I can say is that the core funding of hospitals doesn’t provide for some of the innovative and cutting-edge things that go on, or maybe some really specialized piece of equipment. And that’s where the community donor can help and contribute to that effort.”

Owen and Judith Snider. Owen was accepted into a made-in-Canada CAR-T therapy clinical trial at The Ottawa Hospital to treat his lymphoma.
Owen and Judith Snider.

For Dr. Kekre, philanthropy provides the spark for clinical trials like this, and can help to keep them moving forward. “Without philanthropy, we wouldn’t have a Biotherapeutics Manufacturing Centre or a Methods Centre at The Ottawa Hospital, and we wouldn’t be able to do innovative clinical trials like this. We need this kind of research to get to a place where all Canadians can benefit from these therapies. Without philanthropy, we would never get there.”

And to Dr. Kekre, her team, and their collective efforts to give more patients hope, Owen has a simple message: “Thank you. The whole program is outstanding.”

About the Canadian-Led Immunotherapies in Cancer (CLIC) research program

The CLIC research program, established in 2016, brings researchers, clinicians and patients from across Canada together to build Canadian expertise and capacity for innovation in the promising field of cellular immunotherapy for cancer, including CAR-T therapy. The first CLIC clinical trial launched in 2019 at The Ottawa Hospital and at BC Cancer, with support from BioCanRx, BC Cancer, The Ottawa Hospital Foundation and the Ontario Institute for Cancer Research. Core facilities and resources supporting CLIC include The Ottawa Hospital’s Biotherapeutics Manufacturing Centre, BC Cancer’s Conconi Family Immunotherapy Lab, the Ottawa Methods Centre and the Blueprint Translational Research Group. CLIC team investigators include Drs. Natasha Kekre, Harold Atkins, John Bell, Kevin Hay, Rob Holt, Brad Nelson, John Webb, Manoj Lalu, Kednapa Thavorn, Dean Fergusson, Justin Presseau and Jen Quizi.


The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

Early in the fall of 2020, Michele Juma noticed the vision in her left eye was becoming cloudy. The Sault Ste. Marie resident initially turned to her family doctor for answers. She learned she had a meningioma tumour — and time was not on her side to save her vision. Fearing she would face blindness, Michele, a mom of four, eventually travelled to The Ottawa Hospital where she could receive specialized care — care she could not receive close to home.

It was early November when MRI results revealed the mass at the base of her frontal lobe. “By this time, I lost my ability to see colour in my left eye — my vision was deteriorating. It was like looking through a frosted window,” remembers Michele. While her right eye would start compensating to get her through her day-to-day, Michele was finding the routine of caring for her teenage boys and working a challenge and knew she needed to see a specialist. Soon, she and her husband were making plans for the eight-hour drive to Ottawa to meet with Dr. Danah Albreiki at the University of Ottawa Eye Institute located at The Ottawa Hospital.

Seeking answers at the University of Ottawa Eye Institute

The University of Ottawa Eye Institute was founded in 1992 as the home of The Ottawa Hospital’s Department of Ophthalmology. It is a major clinical, teaching, and research centre in Canada specializing in diseases and conditions that affect the eyes. Dr. Albreiki’s expertise focuses on neuro-ophthalmology and adult strabismus surgery, which focuses on straightening misaligned eyes.

Born and raised in Saudi Arabia, Dr. Albreiki says our Eye Institute plays an international role in sharing our expertise with patients and ophthalmologists in more than 86 countries around the world. As one example, she explains, the Ottawa Eye Institute has an affiliation with India Srikiran Institute of Ophthalmology in Kakinada, Andhra Pradesh. Affiliations like these provide an opportunity for the ophthalmology residents to travel and explore ophthalmology in a very different setting.

Having done her ophthalmology residency in Ottawa, Dr. Albreiki reflects on the importance of teaching. “I think the Eye Institute is honestly an amazing academic place where staff are dedicated first and foremost to their patients, but have a heavy focus for teaching the ophthalmology residents. This ripple effect extends beyond Ottawa and will travel wherever the residents end up working as they share their knowledge and expertise with their communities. As a matter of fact, Michele was seen first by our neuro-ophthalmology fellow Dr. Noran Badeeb who came all the way from Saudi Arabia to train with us.”

Michele, pictured with her family, was treated at the Ottawa Hospital for meningioma tumour.
Michele with her family.

“The danger is it’s very close to the optic nerve, and Michele is a good example of how people can quickly deteriorate with these tumours, and they are at high risk of losing their vision.”

— Dr. Fahad Alkherayf

By early December, Michele met Dr. Albreiki’s team and she learned what was happening with the tumour. “If we leave tumours that are compressing on the optic nerve for too long, there is a high chance that it will damage the optic nerve which subsequently leads to permanent vision loss,” explains Dr. Albreiki. She adds, “Despite the severe vision loss that had happened, we were able to determine, by way of ophthalmic diagnostic testing, that Michele’s optic nerve appeared more suffocated than actually dead. By removing the suffocation, we would allow the optic nerve to breathe again and there would be a good chance she would regain part, if not all, of her vision.”

For that to happen, they would need to act fast.

Understanding meningioma tumours

Knowing Michele had travelled from Sault Ste. Marie for her initial meeting at the Eye Institute, Dr. Albreiki arranged for her to meet later that day with world-class, skull base surgeon Dr. Fahad Alkherayf who set in motion a plan to remove the mass.

He explained to Michele that she had a skull base meningioma. The tumour was about three centimetres by three centimetres — about the size of a golf ball. The biggest challenge with removing these types of tumours is often their location. “How you can reach it without damaging the brain around it and the things attached to it is key. If you’re not careful, and you end up injuring any of these structures, unfortunately, the outcome is devastating,” explains Dr. Alkherayf.

“The Ottawa Hospital is one of the main leading centres in minimally invasive skull base surgery, and I think that speaks to the expertise we have in our centre.”

— Dr. Fahad Alkherayf

Minimally invasive surgery offers new treatment options

Minimally invasive skull base surgery uses a narrow scope with a light to access and remove tumours through the nose.

The treatment used today for a meningioma tumour is relatively new. In the past, it was a much more invasive procedure known as a craniotomy, which results in a large incision with a higher risk of injuring the optic nerve. However, today minimally invasive surgery allows much more effective and safer care for our patients. “Instead of the old, traditional way of going through the skull, and lifting the brain — today, we go through the nose,” explains Dr. Alkherayf. This means no incision, faster recovery time, reduced pain, a higher accuracy rate compared to traditional open surgery, and a shorter hospital stay.

The Ottawa Hospital has established itself as a leader in Canada when it comes to this type of minimally invasive surgery. Dr. Alkherayf says we’re one of the largest centres in Canada doing it. “If we look across the country, The Ottawa Hospital is one of the main leading centres in minimally invasive skull base surgery, and I think that speaks to the expertise we have in our centre. It’s not just surgeons but it takes a good anesthesia, nursing, and neurophysiology team, so the surgeon can function well. I think what’s unique about our hospital is we have this full package providing care to our patients.”

Having access to this expertise is a significant advantage for patients like Michele, who required urgent surgery due to the rapid growth of the tumour and the risk of it causing blindness not only in her left eye but in her other eye as well. After meeting with Dr. Alkherayf as well as Dr. Shaun Kilty, an ear, nose, and throat (ENT) specialist, her surgery was scheduled for December 17, 2020.

Michele remembers feeling anxious and nervous. “It was all really overwhelming — and surreal. When I think that I’d been walking around with this tumour probably for years…it was kind of unbelievable to me to think of the whole gravity of the situation.” However, Michele says she knew she was in good hands. “I do have to say that when I met with Drs. Albreiki, Alkherayf, and Kilty, they were very reassuring and answered all our questions, significantly reducing my anxiety.”

Michele being wheeled into surgery at The Ottawa Hospital to remove her meningioma tumour.
Michele being wheeled into surgery at The Ottawa Hospital to remove her meningioma tumour.

Specialized technique used only at The Ottawa Hospital

Leaving their four sons at home, Michele and her husband arrived back in Ottawa just over a week before Christmas. The minimally invasive surgery would last eight hours with Drs. Alkherayf and Kilty working alongside one another to remove the tumour piece by piece — through Michele’s nose.

“The monitoring helped ensure we didn’t pull too hard on her optic nerve. If it wasn’t for this specialized technique, I don’t think we would have achieved the same results.”

— Dr. Fahad Alkherayf
Continuous evoked visual potential goggles are used by surgeons during some brain and skull surgeons to monitor a patient’s vision and avoid damaging the optic nerve.

During the procedure, Dr. Alkherayf was able to monitor Michele’s vision. In fact, our hospital is the only centre in Canada using this specialized technique. “We have established a method where we can receive a signal from the eye, as well as from the optic nerve and the brain, about what’s happening to the vision while the patient is asleep.” Goggles — which resemble swimming goggles — are placed on the patient while they’re under anesthetic. The goggles send a flashing light, which sends a signal into their retina, and then it travels down their optic nerve, crosses the chiasma (the back of the optic nerves where they meet), and then travels to the vision centre of the brain. The signals will change if the surgeon’s pushing or pulling the optic nerves and potentially damaging them.

According to Dr. Alkherayf, this technique was critical during Michele’s surgery. “Her tumour was basically glued to her optic nerve, which explains why she was having this significant vision problem. The monitoring helped ensure we didn’t pull on her optic nerve. If it wasn’t for this specialized technique, I don’t think we might have achieved the same results.”

The future is looking clear

For the first five days after surgery, Michele says there was a lot of sleeping, but she remembers the moment when she woke up for the first time and she opened her eyes. “My husband was there, and I was able to see — it was right away that I could see again!” Even better news, before Michele was released from the hospital on Christmas Eve, Dr. Alkherayf shared the news she had been hoping for – the tumour was benign, and he was able to completely remove it.

“I’m grateful to be able to watch my sons continue to grow and, of course, to have the chance to be part of the activities they love most, like swimming and hockey.”

— Michele Juma

With this life-changing news in hand, Michele and her husband began their long drive back home to Sault Ste. Marie arriving home at 11:30 p.m. on December 24, just in time to be with their children for Christmas. “It was like a Hallmark movie,” laughs Michele.

Michele, with her husband and four sons, after arriving home in time for Christmas in 2020.

Today, her vision is fully restored. She’s back at work and keeping up with the busy life that comes with raising four teenage boys. “I consider myself to be so incredibly fortunate to have had Drs. Alkherayf and Kilty conduct this surgery. When I think about the complexity of what they did, I never cease to be amazed, and I feel truly blessed.”

While she and her family truly appreciate the exceptional skill of both physicians, Michele adds they were kind, compassionate, and empathic throughout her journey. “As scary as all this was, I can honestly say that I always felt confident that I was in very good hands.” She adds, “I’m grateful to be able to watch my sons continue to grow and, of course, to have the chance to be part of the activities they love most, like swimming and hockey.”


The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

When Lorne Blahut was diagnosed with HIV in 2000, he thought he was going to die. But experts at The Ottawa Hospital, armed with incredible advances in research, had a different plan. Then in 2017, he again found himself face-to-face with another significant health scare — prostate cancer. But Lorne knew he was in good hands.

“Several years ago, my doctor, Stephen Kravcik, told me, ‘You better start planning for your retirement, because you’re not going to die,’” said Lorne. And he was right. The 67-year-old retired 7 years ago from a career at Canada Mortgage and Housing Corporation.

Lorne’s original fears of dying when first diagnosed with HIV were well founded. It is estimated that more than 32 million people have died from HIV since the early 1980s and the high fatality rates from early-on in the epidemic remained staggering for years. But then research turned the tide.

Excellence in research

“Certainly, the mid-90s was the heyday of HIV research when new drugs were developed. The Ottawa Hospital group did revolutionary research led by Drs. Bill Cameron and Jonathan Angel,” said Dr. Kravcik, who came to The Ottawa Hospital in 1994 specifically to do HIV research and clinical trials for new drugs under the guidance of Dr. Cameron. He said at that time about 125 of their HIV patients passed away every year.

Today, HIV is no longer a death sentence.

“It’s not even a chronic disease. Most people like Lorne take one or two pills a day and their lives are totally normal. The pills are superb. They are well-tolerated and with them patients do really, really well.” – Dr. Stephen Kravcik

Lorne Blahut grateful for care received at The Ottawa Hospital
Lorne Blahut grateful for care received at The Ottawa Hospital.

When Lorne was first diagnosed 20 years ago, patients diagnosed with HIV/AIDS were living longer thanks to the antiretroviral medications, but it wasn’t common for patients to survive for decades.

“Being diagnosed was a horrific shock,” said Lorne. “And for a while I kept the diagnosis to myself. Being in the gay community, there was the fear that people were going to find out. It was intimidating, it was daunting, but there’s the saying that your worst fears are only realized in your head.”

Lorne’s fears proved unfounded when he realized he was in competent, caring hands.

Helping patients navigate their disease

Dr. Kravcik
Dr. Stephen Kravcik

“A number of people helped navigate the whole disease piece. There was a team around from the beginning,” said Lorne. “Dr. Kravcik explained what was going to happen with the various medications and took the time to listen when I asked for clarification. Kim Lancaster, the social worker on the team, helped with the initial diagnosis, with moving forward, and with issues I was dealing with personally.”

Kim Lancaster, who worked in the infectious diseases clinic for nine years, said the main stay of her job was helping people emotionally manage the impact of receiving an HIV positive diagnosis, and helping them figure out how to conduct themselves in their professional, social, and emotional lives. She said there’s still such a stigma attached to the disease.

“Lorne knew he needed help and was courageous to reach out his hand like that,” said Kim. “In the HIV world, many of the people who don’t live well with the disease are those who are too mired in shame, or fearful of discrimination, to access medical and psychosocial support. They don’t invite people into their medical experience.”

“The care was all encompassing. I’ve not only been looked after physically – bodily – but also, I have had mental support.” – Lorne Blahut

Lorne said the numerous levels of care he received during his treatment in the early years helped him cope with having an illness that is so stigmatized. He also benefited greatly from the research conducted at the hospital, and the antiretroviral drugs developed over the years to keep the disease in remission. Lorne survived. Then he suddenly found himself faced with another life-threatening disease – prostate cancer.

“When you get a diagnosis of cancer, it takes a while to sink in,” said Lorne. But he wanted to be informed about his treatment options.

Minimally-invasive robotic procedure

Lorne read up on the two prostate cancer surgery options before deciding that the robotic surgery, offered at The Ottawa Hospital, was the right one for him. The da Vinci Surgical System is a state-of-the-art robotic system that the surgeon operates remotely, using cameras and tiny surgical instruments. This operation is easier to recover from because it is performed through small incisions rather than the traditional larger incision in the lower abdomen. The Ottawa Hospital was the third hospital in Canada to acquire this minimally invasive surgical system, which was purchased with funding from the community.

The da Vinci Surgical System is a state-of-the-art robotic system
The da Vinci Surgical System, a state-of-the-art robotic system

“What particularly struck me when comparing the two surgeries was the recovery. The recovery time is longer with the traditional operation because of the significant incision the surgeon has to make, and you wear a catheter for months. There is also a tendency for there to be more nerve damage because it’s not as precise. So, for me it was a no brainer.”

Preparing for surgery

Lorne met with surgeon Dr. Chris Morash, who talked about the possible side effects of prostate cancer surgery. Some individuals experience incontinence and/or sexual dysfunction and some might require hormone therapy after the surgery. Several days later, Lorne met with social worker Liane Murphy and expressed his concerns about all of this.

Liane meets with individuals diagnosed with prostate cancer to help them prepare for their surgery and recovery and to talk through any of their concerns.  Her advocacy on Lorne’s behalf led to a positive pre-operation discussion with Dr. Morash who better addressed Lorne’s concerns.  In February 2018, Lorne underwent three-hour robotic surgery. He recovered well and is back to enjoying retirement.

World-class care, right here at home

“I moved here in 1992.  When I retired seven years ago, someone asked me if I was going to move back to Saskatchewan. First thing that came to mind was, ‘I won’t because I can’t get the healthcare I get at The Ottawa Hospital,’” said Lorne. “Overall, my experience with The Ottawa Hospital has been exemplary. The staff has treated me well and been very supportive. I can’t brag enough about them.”

Lorne is certainly not alone in navigating through the diagnoses and treatment of HIV and prostate cancer. Many men go through similar experiences with these diseases. But when it comes to HIV, Lorne is also trailblazing a new domain in healthcare.

“We don’t have a lot of men his age who have survived HIV,” said Tim Hutchinson, former Director of Social Services at The Ottawa Hospital Cancer Centre who has known Lorne for many years. “He’s a pioneer and role model in what happens next as this population ages, and how it is as a gay man, navigating a healthcare system.”

The Ottawa Hospital is establishing a Research Chair in Gay Men’s Health to create a comprehensive healthcare agenda that will help improve access to, and delivery of gay-relevant healthcare for men of all ages.


The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

It would have been hard not to be impressed while watching Devon Larratt triumphing as the Open World Champion, in both his left and right arm, in the World Armwrestling League. Chants and loud cheers extended from the crowd as Devon, a veteran of the Canadian Armed Forces, faced his opponents time and again from 2008 to 2012. What Devon did not know at this time was that all of the intense training it took to get him on the world stage was leading to the development of debilitating arthritis that was going to jeopardize his greatest passion and career. His only hope to regain his former glory was surgery at The Ottawa Hospital to restore strength in his arms.

A family affair

Devon has been interested in armwrestling for most of his life. At age 18, he entered his first tournament and has represented Canada at international competitions ever since, winning many World Championships. An impressive feat for someone who initially took up armwrestling as a hobby when he was only five years old.

One could say that for the Larratt’s, armwrestling is a family affair. “I grew up armwrestling with my grandmother,” said Devon. “The rumour around the family was that she was the Alberta women’s champion. It’s because of her that I started armwrestling.”

Devon Larratt sitting on an OR table
Devon Larratt, Canadian armwrestling champion

Military force

It wasn’t until Devon joined the Canadian Armed Forces that he got serious about his training. Eighteen years in the military provided him with the opportunity to get in the best shape of his life. “If I wasn’t on a mission,” said Devon, “I was pumping iron.”

Even while on tour overseas in Afghanistan, armwrestling played a large role in his life. Competing against fellow troops, he gained the experience he needed to one day earn himself the title as one of the best armwrestlers in the world.

Injury puts dreams on hold

Like many athletes, Devon suffered injuries that put his dreams and career in jeopardy. Armwrestling is incredibly demanding on tendons and joints. Years of trauma caused by armwrestling led to the development of osteoarthritis, with extra bone build up in his elbows.

“Both my left and right elbow joints were degraded to a point where I was in constant pain,” remembers Devon. Increased pressure in the elbow joints from abnormal mechanics while armwrestling led to a build up of extra bone in areas it shouldn’t grow. Devon was unaware this abnormal bone was breaking apart, creating loose fragments in his joints.

At the same time, Devon’s arthritis caused chronic inflammation between his elbow joint bones, eroding the cartilage in the joint and causing friction between the elbow bones. This not only caused him significant pain but it also greatly impacted his range of motion.

Unable to compete to the best of his ability and in great pain, Devon was referred to a shoulder and elbow specialist at The Ottawa Hospital.

Specialized technique

Devon’s treatment would involve three surgeries: two operations in his right elbow and one in his left. Due to the nature of his work as an armwrestler and in the military, the surgical team made use of a specialized technique – elbow arthroscopy, a minimally invasive surgery. This technique involves inserting a fibre-optic video camera through a small incision. The view inside the joint is then transmitted to a high-definition video monitor, resulting in a more precise operation. As a minimally invasive surgery, this technique preserves as much of the muscles and tendons in the elbow area as possible.

Over one cup of stray floating bone fragments and a golf-ball-size piece of abnormal bone was extracted from Devon’s elbow. Once the bone was removed, the elbow was recontoured and sculpted to correct any deformity and to restore the normal anatomy of the joint.

Expertise right here in Ottawa

Prior to the development of arthroscopic techniques, surgery involved making a long incision, cutting through layers of muscle to get to the joint. This often resulted in a slower healing time and would require a longer rehabilitation period.

Though there had been many advancements in elbow arthroscopy, until a decade ago, this was a specialty procedure not yet available in Ottawa. But a focused effort on the improvement of minimally invasive techniques at our hospital attracted skilled physicians from across the globe.

Now, with local expertise in elbows and shoulders, coupled with the latest equipment and technology, patients can be treated right here at home, in Ottawa. It is in part thanks to donor support that the latest tools were brought to The Ottawa Hospital to allow arthroscopic procedures to take place.

The potential of stem cells

In the future, athletes like Devon may be able to avoid surgery altogether by benefiting from the healing power of stem cells.

Research at The Ottawa Hospital is underway to better understand how bone regenerates, repairs, and heals. Dr. Daniel Coutu, inaugural Research Chair in Regenerative Orthopaedic Surgery, is investigating the impact that trauma, aging, and chronic degeneration have on bones, which support our joints. The star researcher, who was recruited from Switzerland, focuses on the fundamental biology of bone stem cells. He studies various inflammatory disease models caused by arthritis and is working to determine how stem cells can improve healing and recovery.

“Stem cell therapy could be a game changer for professional athletes with repetitive strain bone injuries, allowing them to continue to perform to the best of their ability and give them their quality of life back.”

— Dr. Daniel Coutu.

Remaining at the leading edge of stem cell research will ensure that our patients have the latest treatment options and the best chance at recovery.

Dr. Daniel Coutu
Dr. Daniel Coutu

Bone plays a key role in the health of tissues, such as muscle, tendons, and cartilage that are connected to it. Although bone tissue generally repairs itself very easily, damage to the tendons, ligaments, or cartilage, is much more difficult to heal.

Fortunately, the failure rate for orthopaedic surgery is quite low, approximately two to five percent. However, the success rate drops when athletes incur repeated injuries or with age. Dr. Coutu is hoping to help fill this gap through his stem cell research so that athletes like Devon can have a better recovery rate and longer-lasting results.

“With the growing number of baby boomers and athletes suffering with aches and pains in their joints, I am hoping that our collaborative work will prolong the life of their joints. Stem cell research being conducted here in Ottawa could enable these patients to return to normal sporting activities, improving their quality of life,” said Dr. Paul E. Beaulé, Head, Orthopaedic Surgery at The Ottawa Hospital.

Becoming a champion again

Devon with weights

After Devon’s surgeries, rehabilitation was his next focus. “I treated rehab like preparation for any other event. This, combined with the incredible work of my surgery team, helped me get back to competing less than a year later,” said Devon.

Just eleven months after undergoing three surgeries on his arms at The Ottawa Hospital, Devon was back on top – a champion once again.

“I am so grateful for my care team at The Ottawa Hospital and that we have this level of expertise right here in Ottawa. They helped me get back to competing and doing what I love.” –

— Devon Larratt

Devon has since competed against and defeated, some of the most legendary armwrestlers, winning himself numerous championships across the globe.

More recently Devon has opened the gym in his garage to the public to help encourage others to be fit, to help train, and to show off his hardware. There is no doubt that armwrestling will continue to play a large role in Devon and his family’s life for years to come.

Devon and Dr. Pollock armwrestle

The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

We each have a defining moment in our life — a moment that changes our life forever. For some, that moment is not as clearly defined as it is for others. For Kimberly Mountain, that moment was the discovery of a cancerous brain tumour.

In February, 2011, Kimberly was 28 years old and out with her then-boyfriend, Matt Mountain, when she felt a weird, strong twitch on the right side of her face as they were driving. “Then all I remember is waking up. Our car was pulled over on the side of the highway. Paramedics were there, and I heard Matt say, ‘Kim just had a seizure’,” recalls Kimberly.

Kimberly was rushed by ambulance to the trauma centre at the Civic Campus of The Ottawa Hospital. She would have another seizure, and then an MRI revealed a brain tumour on her right frontal lobe. That moment changed her life.

For two weeks, The Ottawa Hospital became Kimberly’s second home. Her family and Matt never left her side. “Oddly enough, my memories of being in the hospital aren’t of a sad time at all. They are actually some of my favourite memories, filled with friends and family. Everyone I loved was there. And we made friends with the amazing nurses and staff,” says Kimberly.

Awake brain surgery

Kimberly Mountain at The Ottawa Hospital

On March 7, 2011, Kimberly had brain surgery. Her surgeon, Dr. Charles Agbi, would keep her awake for the operation. This is a highly-specialized surgical procedure that requires a team approach led by an experienced neurosurgeon and a neuroanesthesiologist. It enables the neurosurgeon to remove tumours that would otherwise be inoperable because they are too close to areas of the brain that control vision, language, and body movement. Regular surgery could result in a significant loss of function. By keeping Kimberly awake, the medical team was able to ask her to move certain body parts and speak during the procedure.

When she thinks back to the operation, she remembers never being worried. “I guess the hospital staff had made me feel safe and confident.”

During surgery, Kimberly could feel the vibrations of the team drilling into her head, but she didn’t mind it. “I kept talking, laughing, and singing Disney songs, like “Hakuna Matata.” I was telling them how I was going to go to Disney World when it was over. Five hours seemed like just one,” says Kimberly.

For Dr. Agbi, this type of interaction is critical to the success of the surgery. “If they’re only answering questions [surgery staff] are asking them, sometimes we might miss something.”

Transformational technology

It is advances in technology like Kimberly experienced that allow neurosurgeons at The Ottawa Hospital to provide transformational care.

In fact, donor support brought a specialized microscope to Ottawa, allowing surgeons to perform fluorescence-guided surgery. The technique requires patients to drink a liquid containing 5-aminolevulinic acid (5-ALA) several hours before surgery. The liquid concentrates in the cancerous tissue and not in normal brain tissue. As a result, malignant gliomas “glow” a fluorescent pink color under a special blue wavelength of light generated by the microscope. This allows surgeons to completely remove the tumour in many more patients, with recent studies showing that this can now be achieved in 70 percent of surgeries compared to the previous 30 percent average. The first surgery of this kind in Canada was performed at The Ottawa Hospital.

“Dr. Nicholas sat down, held my hand, and said the word — cancer. Everything went blurry, and this time I couldn’t stop the tears. I had been strong up until that moment.” – Kimberly Mountain

Oncologist reveals brain tumour is cancerous

When pathology tests on the tumour came back several weeks later, Kimberly met with her oncologist, Dr. Garth Nicholas, and he revealed the news she feared the most. “Dr. Nicholas sat down, held my hand, and said the word — cancer. Everything went blurry, and this time I couldn’t stop the tears. I had been strong up until that moment,” remembers Kimberly.

Kimberly Mountain

During her cancer treatment, Kimberly faced 30 rounds of radiation, followed by chemotherapy. Matt, who had proposed during Kim’s long stay in the hospital, took her on trips to amusement parks or convertible drives to help get her through the difficult times. The couple even made a special trip to Disney World. “All I could think of during my brain surgery was how happy and carefree it was there. The world was suddenly much more exciting, and I was aware of every little smell, feeling, and moment—something I think maybe only cancer patients can appreciate.”

This all provided Kimberly with a distraction from the side effects, the tiredness, and the hair loss. Losing her hair was one of the most difficult parts of treatment. “I hated losing my long, beautiful hair.”

Less than a year later, on January 6, 2012, Kimberly received her last chemotherapy treatment. “I asked those pills to eat that cancer.” Her wish would be realized when an MRI could not detect any residual cancer. Kimberly transformed into a cancer survivor.

Kim Mountain and her family as she rings the bell.

Through a mother’s eyes

Kimberly has become known for never showing up for an appointment without a small contingent of supporters. She always has her family by her side, including her mother, Cyndy Pearson. Cyndy laughs that Kimberly always has an entourage—even when she learned her tumour was cancerous. “We were all there. When there’s something important, we’re all there. When Dr. Garth Nicholas leaned over, and said, ‘Kim you have cancer,’ we were all crying.”

A mother and a daughter hugging
Kimberly Mountain and her mother, Cyndy Pearson

Cyndy is grateful to The Ottawa Hospital for saving Kimberly, her youngest of three children. She points out March 7, 2011 is a new date circled on the family’s calendar—Kimberley’s re-birthday.

Cyndy is also forever grateful for Dr. Agbi’s care. “If this surgery hadn’t happened, she wouldn’t be having any more birthdays. If the hospital had not been able to save her…” Cyndy’s voice trails off.

 
Kimberly Mountain

“Even if the cancer does come back, I am confident that The Ottawa Hospital will be able to save me again, thanks to its constant innovative research and clinical trials that are making treatment better and saving lives.” — Kimberly Mountain

Cancer survivor ten years later

Today, Kimberly has a tattoo on the back of her neck that reads “Hakuna Matata – March 7, 2011”. She celebrates every milestone — including being cancer free — with family, friends, and of course Matt, who never left her side and who is now her husband. You could say it’s like a Disney ending.

Not everything went back to normal. “My precious hair will never be the same,” says Kimberly. “There’s a big spot where my hair will never grow back. The whole right side of my head is permanently bald.” However, always finding the positive, Kimberly says she can do her hair in ten seconds these days, thanks to a few different wigs, “I may actually own more wigs than shoes.”

All joking aside, Kimberly is grateful for each day. “Even if the cancer does come back, I am confident that The Ottawa Hospital will be able to save me again, thanks to its constant innovative research and clinical trials that are making treatment better and saving lives.”

For now, Kimberly takes it one day at a time, celebrating life’s little moments each day.

Hear Kimberly Mountain on Pulse: The Ottawa Hospital Foundation Podcast.


The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.

The Ottawa Hospital was the first Canadian hospital to have an integrated medical 3D printing program for pre-surgical planning and education. Since the arrival of the program, made possible by the generosity of a donor, The Ottawa Hospital has been a leader in innovative advancements in this area. Doctors have been able to harness 3D printing to create detailed anatomical plans before a patient arrives in the operating room, reducing the need for invasive surgery, and ultimately improving outcomes with a significant cost savings. It’s this program, which positions the hospital’s Medical Imaging Department at the forefront of international developments in radiology and is revolutionizing the way surgery is done. It’s this kind of forward thinking that allowed The Ottawa Hospital to be ready when the COVID-19 pandemic arrived in Ottawa, mobilizing innovative 3D printing technology at the hospital, in local companies, and out in the community, to quickly create PPE for front-line workers.

Ready to face the pandemic

Dr. Adnan Sheikh
Dr. Adnan Sheikh holding a 3D printed replica

As members of The Ottawa Hospital’s 3D Printing Laboratory watched how COVID-19 was spreading throughout China and Europe, they quickly became aware of how some parts of the world were facing dramatic equipment shortages. That’s when Dr. Adnan Sheikh, Director of the 3D Printing Laboratory, and his team started to think creatively about how they could help their colleagues be better prepared for the pandemic.

“I reached out to Dr. David Neilipovitz, Department Head of Critical Care, to offer help and we identified many areas where the 3D Printing Lab would be in the best position to help in case of any shortages,” says Dr. Sheikh.

From that conversation, the 3D printing team started developing several different designs of PPE (Personal Protective Equipment) to help safeguard colleagues who would be caring for patients critically ill from COVID-19.

“We were able to create oxygen tents, goggles, tube connectors, intubation shields, and face shields which are a key piece of equipment,” explains Dr. Sheikh.

These transformational advancements wouldn’t have been possible just five years ago.

“This is an innovative technology. It’s really evolved and it’s changing the way we practice medicine.”

— Dr. Adnan Sheikh

Testing the prototypes

Once the 3D lab began producing pieces of PPE, each one needed to be tested. Dr. Neilipovitz played a key role in testing these designs in advance, allowing The Ottawa Hospital to be innovative during challenging times.

“Thanks to our 3D team, they allowed us to think outside the box and quickly find us solutions to be ready to help our patients.”

— Dr. David Neilipovitz

In fact, Dr. Neilipovitz and his team in the ICU were instrumental in helping the 3D team refine and test prototypes to ensure they were up to the task. A crucial step in the process and one that required patience, expertise, and an open mind.

A perfect example was an intubation shield designed with the help of Leonard Lapensee, an Imaging Technician, who works at the hospital. The ICU team tested this prototype; they modified it and it was later mass-produced. This is now used in the ICU, operating rooms, and emergency rooms.

Community support takes The Ottawa Hospital to the next level

Once they received the green light for the 3D equipment, The Ottawa Hospital was then able to produce as much quantity as the lab could handle. However, the collaboration went beyond the lab and even the walls of The Ottawa Hospital.

“We knew we had limited resources and were aware that we wouldn’t be able to manufacture and print everything in the lab. So, we prototyped these devices and pushed them out for production at different sites at The Ottawa Hospital. We also reached out to volunteers in the community who had offered to help.”

There was a collaboration with the University of Ottawa Makerspace led by engineering professor Dr. Hanan Anis and her team to help with the design and prototyping process. It didn’t stop there—the community support continued to grow to help produce PPE such as face shields, and even headbands.

A good example of that support was when Ottawa resident Marc Beal stepped forward to lend a hand. “Due to resource constraints, we needed help printing headbands for face shields. Marc and his friends, who have home 3D printers, approached us and printed these headbands for us,” explains Dr. Sheikh.

Another key piece of equipment was the oxygen helmet, which is used with patients who require a constant flow of oxygen. Once again, the 3D lab was able to prototype it. “We tested it and once we were convinced that it would help our patients, we reached out to Darcy Cullum at Ottawa Mould Craft, who was happy to work with us.”

Ultimately, that community support allowed The Ottawa Hospital to ensure staff have the PPE needed to keep both care team members and patients safe during the peak of COVID-19.

The best part of all, notes Dr. Sheikh, is that this all came about organically. “Colleagues helping colleagues—having an open mind and being willing to integrate what we can contribute. That included assessing the gear and testing it out to make it reality. I feel privileged to live in Ottawa; our community support system is the best in the world!”

COVID-19 may have turned the world upside down but it was a forward-thinking donor in 2016, who allowed The Ottawa Hospital to have the technology in place to be ready when our patients needed us most.

“With COVID-19 everything has changed. 3D printing now has a different role in the medical world.”

— Dr. Adnan Sheikh

The Ottawa Hospital is a leading academic health, research, and learning hospital proudly affiliated with the University of Ottawa.